Real and Complex Continuous Fourier Transform

1 Sine/Cosine and Complex Fourier Series

Convert the following sine/cosine Fourier series to \mathbb{C}-exponential form.
A) $5 \sin (7 x)$
B) $5 \cos (2 x)$
C) $7+2 \sin (3 x)$
D) $3 \sin (4 x)+2 \cos (4 x)$
E) $4 \sin (2 x)+5 \cos (3 x)$
F) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} \sin (2 n x)$

Convert the following \mathbb{C}-exponential Fourier series to sine/cosine form.
G) $2 e^{-2 t i}+2 e^{2 t i}$
H) $(-3 i) e^{-2 t i}+(3 i) e^{2 t i}$
I) $(2-3 i) e^{-5 t i}+(2+3 i) e^{5 t i}$
J) $(5+i) e^{-t i}+1+(5-i) e^{t i}$
K) $5 e^{-3 t i}+(7 i) e^{-t i}+(-7 i) e^{t i}+5 e^{3 t i}$
L) $\sum_{-\infty}^{\infty}(-1)^{n} n i e^{2 n t i}$

2 Fourier Coefficients and Series

For the following functions (defined on $(-\pi, \pi)$ and extended periodically elsewhere)
(i) Find formulas for the \mathbb{C}-exponential Fourier coefficients.
(ii) Write the terms for $n=-1,0,1,2$ in the \mathbb{C}-exponential Fourier series.
(Compute coefficients using the methods suggested - be careful about c_{0}.)
A) $f(t)=\delta(t)$
("Impulse at $t=0$ ")
Compute by using the definition.
B) $f(t)=\delta(t-c)$
("Impulse at $t=c$ ")
Compute by shifting the answer from the previous part.
C) $f(t)=\delta(t-a)-\delta(t-b)$

Compute using linearity of Fourier series.
D) $f(t)=\left\{\begin{array}{ll}1 & a<t<b \\ 0 & \text { otherwise }\end{array} \quad\right.$ ("Square Pulse Wave")

Compute by using the integral transformation on the previous answer.
E) $f(t)=\left\{\begin{array}{rl}1 & 0<t<\pi \\ -1 & -\pi<t<0\end{array}\right.$ ("Up-Down Wave")
Compute using linearity of Fourier series.
F) $f(t)=|t|$
("Zig-Zag Wave")
Compute by using the integral transformation on the previous answer.
G) $f(t)=1$

Compute by using the definition.
H) $f(t)=t$
("Saw-Tooth Wave")
Compute by using the definition.

